Concentration Behavior of Endemic Equilibrium for a Reaction-diffusion-advection SIS Epidemic Model


主讲人:彭锐  江苏师范大学教授


地点:腾讯会议 202 978 140


主讲人介绍:彭锐,江苏省特聘教授,获得“江苏省杰出青年基金”和“江苏省数学成就奖”,入选江苏省“333人才工程”中青年学科带头人。博士毕业于东南大学和澳大利亚新英格兰大学,曾在加拿大纽芬兰大学AARMS和美国明尼苏达大学IMA(美国NSF资助)从事博士后工作,  德国“洪堡学者”获得者。目前主要研究兴趣包括偏微分方程、动力系统理论以及在生物学、传染病学和化学反应等领域的应用。已在Annales de l'Institut Henri Poincaré C, Analyse non linéaire、Transactions of the American Mathematical Society、Journal of Functional Analysis、SIAM Journal on Mathematical Analysis、Indiana University Mathematics Journal、Journal of Nonlinear Science、Calculus of Variations and Partial Differential Equations、SIAM Journal on Applied Mathematics、 Journal of Mathematical Biology、 Physica D、 Nonlinearity、European Journal of Applied Mathematics、Journal of Differential Equations等数学杂志发表学术论文多篇。

内容介绍:In this talk, I shall report our joint work on a reaction-diffusion-advection SIS epidemic model with mass action infection mechanism in a one dimensional bounded domain. We first prove the existence of endemic equilibrium (EE) whenever the basic reproduction number is greater than unity. We then focus on the asymptotic behavior of EE in three cases: large advection; small diffusion of the susceptible population; small diffusion of the infected population. Our main results show that the asymptotic profiles of the susceptible and infected populations obtained here are very different from that of the corresponding system without advection and that of the system with standard incidence infection mechanism. Thus, the effects of advection and different infection mechanisms are substantial on the spatial distribution of infectious diseases. Our findings bring novel insight into the disease control strategy. This talk is based on my joint work with Renhao Cui, Huicong Li and Maolin Zhou.